Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(9): 2100-2113, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38412510

RESUMO

The ability of antimicrobial peptides to efficiently kill their bacterial targets depends on the efficiency of their binding to the microbial membrane. In the case of enterocins, there is a three-part interaction: initial binding, unpacking of helices on the membrane surface, and permeation of the lipid bilayer. Helical unpacking is driven by disruption of the peptide hydrophobic core when in contact with membranes. Enterocin 7B is a leaderless enterocin antimicrobial peptide produced from Enterococcus faecalis that functions alone, or with its cognate partner enterocin 7A, to efficiently kill a wide variety of Gram-stain positive bacteria. To better characterize the role that tertiary structural plasticity plays in the ability of enterocin 7B to interact with the membranes, a series of arginine single-site mutants were constructed that destabilize the hydrophobic core to varying degrees. A series of experimental measures of structure, stability, and function, including CD spectra, far UV CD melting profiles, minimal inhibitory concentrations analysis, and release kinetics of calcein, show that decreased stabilization of the hydrophobic core is correlated with increased efficiency of a peptide to permeate membranes and in killing bacteria. Finally, using the computational technique of adaptive steered molecular dynamics, we found that the atomistic/energetic landscape of peptide mechanical unfolding leads to free energy differences between the wild type and its mutants, whose trends correlate well with our experiment.


Assuntos
Bacteriocinas , Bacteriocinas/farmacologia , Bacteriocinas/química , Bacteriocinas/metabolismo , Enterococcus faecalis , Peptídeos/metabolismo , Bactérias Gram-Positivas , Bicamadas Lipídicas/metabolismo , Hidrocarbonetos Aromáticos com Pontes
2.
Chemphyschem ; 23(17): e202200175, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35594194

RESUMO

The potentials of mean force (PMFs) along the end-to-end distance of two different helical peptides have been obtained and benchmarked using the adaptive steered molecular dynamics (ASMD) method. The results depend strongly on the choice of force field driving the underlying all-atom molecular dynamics, and are reported with respect to the three most popular CHARMM force field versions: c22, c27 and c36. Two small peptides, ALA 10 and 1PEF, serve as the particular case studies. The comparisons between the versions of the CHARMM force fields provides both a qualitative and quantitative look at their performance in forced unfolding simulations in which peptides undergo large changes in structural conformations. We find that ASMD with the underlying c36 force field provides the most robust results for the selected benchmark peptides.


Assuntos
Benchmarking , Simulação de Dinâmica Molecular , Conformação Molecular , Peptídeos/química
3.
Biophys J ; 120(10): 2009-2018, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33775636

RESUMO

The energetics and hydrogen bonding profiles of the helix-to-coil transition were found to be an additive property and to increase linearly with chain length, respectively, in alanine-rich α-helical peptides. A model system of polyalanine repeats was used to establish this hypothesis for the energetic trends and hydrogen bonding profiles. Numerical measurements of a synthesized polypeptide Ac-Y(AEAAKA)kF-NH2 and a natural α-helical peptide a2N (1-17) provide evidence of the hypothesis's generality. Adaptive steered molecular dynamics was employed to investigate the mechanical unfolding of all of these alanine-rich polypeptides. We found that the helix-to-coil transition is primarily dependent on the breaking of the intramolecular backbone hydrogen bonds and independent of specific side-chain interactions and chain length. The mechanical unfolding of the α-helical peptides results in a turnover mechanism in which a 310-helical structure forms during the unfolding, remaining at a near constant population and thereby maintaining additivity in the free energy. The intermediate partially unfolded structures exhibited polyproline II helical structure as previously seen by others. In summary, we found that the average force required to pull alanine-rich α-helical peptides in between the endpoints-namely the native structure and free coil-is nearly independent of the length or the specific primary structure.


Assuntos
Alanina , Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Conformação Proteica em alfa-Hélice
4.
RSC Adv ; 10(11): 6520-6535, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35495997

RESUMO

Six mutants of the tryptophan zipper peptide trpzip1 have been computationally and experimentally characterized. We determine the varying roles in secondary structure stability of specific residues through a mutation assay. Four of the mutations directly effect the Trp-Trp interactions and two of the mutations target the salt bridge between Glu5 and Lys8. CD spectra and thermal unfolding are used to determine the secondary structure and stability of the mutants compared to the wildtype peptide. Adaptive steered molecular dynamics has been used to obtain the energetics of the unfolding pathways of the mutations. The hydrogen bonding patterns and side-chain interactions over the course of unfolding have also been calculated and compared to wildtype trpzip1. The key finding from this work is the importance of a stabilizing non-native salt bridge pair present in the K8L mutation.

5.
J Chem Theory Comput ; 12(4): 2028-37, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-26930270

RESUMO

Mechanically driven unfolding is a useful computational tool for extracting the energetics and stretching pathway of peptides. In this work, two representative ß-hairpin peptides, chignolin (PDB: 1UAO ) and trpzip1 (PDB: 1LE0 ), were investigated using an adaptive variant of the original steered molecular dynamics method called adaptive steered molecular dynamics (ASMD). The ASMD method makes it possible to perform energetic calculations on increasingly complex biological systems. Although the two peptides are similar in length and have similar secondary structures, their unfolding energetics are quite different. The hydrogen bonding profile and specific residue pair interaction energies provide insight into the differing stabilities of these peptides and reveal which of the pairs provides the most significant stabilization.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos/química , Termodinâmica , Ligação de Hidrogênio , Oligopeptídeos/química , Conformação Proteica em Folha beta , Desdobramento de Proteína , Proteínas/química
6.
PLoS One ; 10(5): e0127034, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25970521

RESUMO

Steered Molecular Dynamics (SMD) has been seen to provide the potential of mean force (PMF) along a peptide unfolding pathway effectively but at significant computational cost, particularly in all-atom solvents. Adaptive steered molecular dynamics (ASMD) has been seen to provide a significant computational advantage by limiting the spread of the trajectories in a staged approach. The contraction of the trajectories at the end of each stage can be performed by taking a structure whose nonequilibrium work is closest to the Jarzynski average (in naive ASMD) or by relaxing the trajectories under a no-work condition (in full-relaxation ASMD--namely, FR-ASMD). Both approaches have been used to determine the energetics and hydrogen-bonding structure along the pathway for unfolding of a benchmark peptide initially constrained as an α-helix in a water environment. The energetics are quite different to those in vacuum, but are found to be similar between implicit and explicit solvents. Surprisingly, the hydrogen-bonding pathways are also similar in the implicit and explicit solvents despite the fact that the solvent contact plays an important role in opening the helix.


Assuntos
Peptídeos/química , Solventes/química , Sequência de Aminoácidos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Desdobramento de Proteína , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...